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Abstract 
The influence of measurement errors on structure-factor 
difference amplitudes are discussed and a formula is 
derived using Bayesian statistics that gives better esti- 
mates of the difference amplitudes and that reduces the 
noise in difference maps. The formula is of importance 
for reflections with poor signal-to-noise ratio. Significant 
improvement is obtained for poor data sets, such as those 
recorded in fast time-resolved experiments, and also for 
subsets in any data set that normally contains poorly 
accurate data, e.g. close to the high-resolution limit. 

1. Introduction 
The difference Fourier technique, owing to its simplic- 
ity and its capability to detect small modifications in 
electron density, is extensively used in the field of crys- 
tallography. Errors in difference-electron-density maps 
are appreciably smaller than in corresponding Fourier 
maps, such as 2Fob.~ - F c a l c  syntheses (see Table 1 for 
the notation used) and subtle features may be picked out 
more easily (Henderson & Moffat, 1971). Also, from one 
known parent crystal structure, it is possible to determine 
a number of closely related isomorphous structures by 
only measuring the amplitudes of their structure factors. 
The parent structure might be an atomic model at an 
intermediate stage of refinement, what we call a partial 
model with errors, or one of two related structures. In 
the latter case, one is for example seeking the position of 
heavy atoms or other reagents such as enzyme inhibitors 
or the determination of an intermediate structure in the 
field of time-resolved crystallography. 

The technique was pioneered by Cochran (1951) and 
effects of errors were analysed in detail by Henderson 
& Moffat (1971). A general solution has been proposed 
to minimize the effect of errors in the phases that 
are experimentally determined and/or calculated from 
a model (Blow & Crick, 1959). Although the con- 
sequences of experimental errors in the measurement 
of structure-factor amplitudes have been pointed out 
(Henderson & Moffat, 1971), no remedy to this problem 
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has been proposed. This may seem surprising given 
that the features in a difference Fourier synthesis arise 
exclusively from structure-factor-amplitude differences 
(the same phase is used for the two structure factors) 
but it can be explained by two facts: Firstly, the main 
source of noise in a difference map usually results from 
errors in the phases. In fact, when the difference is 
small ( f  << F), the amplitude difference is the pro- 
jection of the difference vector along the two structure 
factors (which both have approximately the same phase 
in this case), see Fig. 1. The unmeasured orthogonal 
component, which on average is as large as the parallel 
component, is neglected. This results in peak heights 
in difference density maps of half their true values on 
average (Henderson & Moffat, 1971) and noise that is 
large relative to the amount of true density in the map 
(but on an absolute scale the error is much smaller 
than it would be in a 2Fob s --Fcalc map). The noise 
is further enhanced owing to the errors of the parent 
structure phases. Secondly, in a majority of cases, static 
structures are studied and exposure times are chosen 
so that structure-factor amplitudes are measured with 
adequate accuracy. 

However, cases occur where the statistical noise in 
the measurements appreciably degrade the quality of 

Fig. !. The relation between the structure factors Fcalc (of the parent 
structure model), F (of the parent structure) and F' (of the related 
structure), fx is the projection along F of f = (F' - F). When 
f << F then (F'  - F) ~_ fx. 
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Table 1. Notation 

The P of OrV and N of aN refer to the P atoms in the model, 
which is assumed to lack Q atoms, and the total N atoms in the 
true structure (N = P + Q) and where the P atoms have errors in 
their coordinates. Here, FN is thus the same as F [and FN and Fp 
have different meanings for the primed parameters (see text)]. For 
the distributions, the subscripts C and N refer to centrosymmetric and 
non-centrosymmetric, respectively. For values of e, see for example 
Stewart & Karle (1976). 

V , V  
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4 
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P(A/B) 

~-]~(AB-AB) 
[F_flA2--A2) ~_,( B2-B2) ] 1/ 2 

Rsym 

Rc~st 

a vector and its amplitude 
structure factor of parent structure 
model structure factor of parent structure 
structure factor of related structure 
F ~ -- F 
F t -- F 

I '  - -  1 

intensity of parent structure 
observed value of l 
variance of lobs 
estimate of F from lobs using e.g. the methods of French 

& Wilson (1978) 
variance of Fobs 
the best estimate of ,_5F 
the best estimate of f for a difference map 
the true value of f 
o . 2 ( 1 - a  2 ) 

(Dorp/o.N) 2 
(F2p/~) 
(F2NI c) 
correction factor for the expected intensity in a recipro- 

cal-lattice zone 
(cos(2~H • ,_.Xr7) ) (average over all atoms, [] is the 

reciprocal-lattice vector and J r j  is the coordinate 
error of atom j in the model) (Luzzati, 1952) 

f P ( ( )  exp(i()  d~ = figure of merit 
o.2 t72 (C DI2)I( obs.F + a'obs.F + ~o.2)12) , the factor derived 
in (14) 

the conditional probability of A knowing B 
the average of A 

correlation coefficient between A 
and B 

Y]hkt Y~ i I ii.hkl-- ihktl 
'k'~Z.,hkt ~']~i li.hkl 

~_,hkllFobs- Fcalc I 
"~"~2-.,hkl Fobs 

the difference maps. This will generally concern the 
contribution from reflections close to the high-resolution 
limit as well as data sets that for some reason have been 
collected with significant statistical error. One example 
is real-time-resolved experiments, where the acceptable 
exposure time often limits the statistical precision of the 
data. Further, the aim of following all the steps in a 
reaction implies that the differences between adjacent 
structures along the reaction coordinate will be subtle. 
As a consequence, not only is the noise high but also 
the signal is low. 

A common practice is to throw away measured dif- 
ferences that are larger than a reasonable threshold. 
For true outliers, this is a correct procedure but it is 
also frequently applied to removal of unreasonably large 

differences in statistically inaccurate data. This might 
improve the data quality since these large differences 
have a significant influence on the map. However, a 
more adequate procedure should use the information 
given by the measurements, whatever it is, together with 
other information at hand and deduce estimates of the 
difference amplitudes. 

In this paper, we propose a method that utilizes a 
priori knowledge to improve the estimates of structure- 
factor-amplitude differences. The estimates can be used 
for difference maps as well as for refinement. It is also 
in principle applicable to any other situation where dif- 
ference amplitudes are used, e.g. for difference Patterson 
maps or with anomalous data. Theoretical considera- 
tions are developed in §2 and a simplified and efficient 
formula is suggested in §2.4. The technique has been 
tested on several fast time-resolved Laue data sets and 
results are presented in §3. It should be pointed out that 
the simplified formula follows directly from assuming 
Gaussian errors around the observed A F  and a Gaussian 
distribution of AF. The somewhat complicated deriva- 
tion serves the purpose of justifying these assumptions 
and to point out how a more exact expression can be 
obtained, if desired. 

2. Theory 

2.1. Background 
French & Wilson (1978) treated the problem of cal- 

culating structure-factor amplitudes from intensity mea- 
surements using Bayesian statistics. They were address- 
ing the problem of what to do with weak measurements. 
The fact that the observed intensity can even be negative 
owing to statistical fluctuations points out that going 
from the intensity to the structure-factor amplitude is 
not simply a question of taking the square root. In the 
same manner, by using the prior knowledge we have 
about the distribution of, in our case, the differences 
between two sets of related structure-factor amplitudes 
and of the magnitude of the errors, we can make a 
better estimate of A F  than simply (F~b ~ -- Fobs). The 
basic idea is the following: The measurement error is 
larger, on an absolute scale, for strong reflections than 
for weak reflections. Therefore, the distribution of the 
measured differences for the strong observations will be 
broader than for the weak ones even if the distributions 
of the real differences are the same (imagine the case 
where there are no differences, only measurement er- 
rors), leading to overestimation of the differences for 
the strong observations compared with the weaker ones. 
Since the errors are large for the strong reflections, 
the resulting noise can easily dominate the map. More 
accurately expressed, the larger the estimated uncertainty 
for an observed difference amplitude compared with the 
expected width of the amplitude difference distribution, 
the less dependent on the measurement and the more 
dependent on the prior expected value the estimate 
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should be. For example, since the expected amplitude- 
difference distribution is narrower at higher resolution, 
the same measured difference amplitude, with the same 
estimated uncertainty, should be reduced for a higher- 
resolution reflection compared with a lower-resolution 
one. 

We will first derive the expressions for the best 
possible difference map and for an optimum estimate 
of the difference amplitude using the information of 
the expected distributions of F and F'. The expression 
for the best difference map includes the structure-factor 
phase probability, which has been treated previously as- 
suming no measurement errors (e.g. Read, 1986). When 
computing electron-density maps, common practice is to 
first calculate Fs from measured intensities, preferably 
by using methods such as described by French & Wilson 
(1978), and then to calculate a phase weight to reduce 
the noise in the map. By doing this, one is separating 
the probabilities of the phase and the amplitude, which 
is not strictly correct since the probability distribution 
of the phase depends on the amplitude. The separation 
simplifies the calculations and is in most cases justified 
(see §2.4). Similarly, we will show that the expressions 
obtained here can be simplified, under some reasonable 
assumptions, to a formula that is more practical than 
the rigorous expression and that can be used both 
for difference maps and for estimates of difference 
amplitudes. 

There is at present great interest in using Bayesian 
approaches for the estimation of measurands. Examples 
of related work are, apart from French & Wilson (1978), 
Terwilliger (1994), who estimates a difference vector 
in the case of multiwavelength anomalous-diffraction 
(MAD) data, and Terwilliger & Berendzen (1996), who 
apply a similar method for weighting in structure refine- 
ment. 

2.2. Best difference map 
Blow & Crick (1959) showed that, in order to mini- 

mize the r.m.s. (root mean square) error in an electron- 
density map, the centre of gravity of the probability 
distribution of the vector in question should be used, 
thus defining the best map: 

Fbest = f FP(F) dF, (1) 

where P(F) is the probability distribution of F. As 
pointed out by Srinivasan (1968), P(F) is the conditional 
expectation value of F, i.e. the expected value of F 
given the information we have. Similarly, in the case 
of a difference map, one should use as coefficients 

rbes, - -  , f  rP(f) dr, (2) 

where f = ( F ' - F ) .  We assume that we have a 
model of the parent structure and observations of both 

the parent and the related structure. The probability 
distribution of f can be expressed as the joint conditional 
probability of F and F' given the observed intensities 
and E, which symbolizes our prior assumed knowledge, 
i.e. the assumed distribution of the measurement errors 
(including the estimations of the variances of the ob- 
servations), the assumed probability distributions of F 
and F', and possibly the model, i.e. Fcalc. The choice 
of F and F', instead of e.g. (F + F ' ) /2  and ( F ' - F )  
(cf. Terwilliger, 1994), is motivated by the more direct 
relation to the measured quantities. The expressions 
become asymmetric in F and F' if we assume F' to 
depend on F and F to depend on some external prior 
knowledge, such as a model, but, in the absence of 
any external prior knowledge, F and F' are of course 
interchangeable. Expression (2) will thus be 

fbest = f f ( F ' - F ) P ( F , F ' / l o b s ,  l'obs, E ) d F d r ' .  (3) 

If only observations of the related structure are avail- 
able, which is equivalent to examining the difference 
between a model and the corresponding set of obser- 
vations, the same expressions can be used, replacing 
( F ' - F )  by (F - Fcalc ) and by leaving out the probability 
distribution of F' (and changing the normalization con- 
stants appropriately). The difference between F and Fcalc 
could be due to a model that might not be complete and 
contains errors in the atomic positions. The difference 
between F' and F is formally equivalent to the difference 
between F and Fcalc, though in this case it corresponds to 
changes in the structure and not to errors in the model. 

By using Bayes's theorem (see e.g. French & Wilson, 
1978), which states that 

P(A/B) ~ P(B/A)P(A),  (4) 

we can express the probability distribution in (3) as 

P( F, F' / lobs, l'obs, E ) cx P , ( l ob~, ffob,JF, F', E) P2 ( F, F' / E ). 
(5) 

It is reasonable to assume that the observed intensities 
are normally distributed around their true value and that 
their variances are known (French & Wilson, 1978). 
As pointed out by Hendrickson & Lattman (1970), the 
distribution around F can also be well approximated 
by a Gaussian even though the errors around 1 and F 
cannot both be strictly Gaussian. Assuming a Poisson 
distribution of the measured intensity and using the 
central limit theorem, it is theoretically more satisfying 
to use a Gaussian distribution of the intensity and we 
will do so in the following. If we assume that the 
measurement errors of lob s and l~b s are independent, we 
have 

Pi (lob~, lo'bs/F, F', E) d/cht' 

oc exp[  (l°bs - I ) 2 ]  exp (l°~bs -- I')2" d/ ' .  
2 '2 d/ (6) 

2Crobs, 1 20"obs, / 
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Basic probability theory states that 

Pz(F, FI/E) = P3(F/E)P4(F'/F,E). (7) 

The probability distribution of F can be obtained from 
Luzzati (1952) and from the Wilson distribution (Wilson, 
1949) as derived by Srinivasan & Ramachandran (1965). 
In the non-centrosymmetric case, the distribution is a 
circular symmetric Gaussian around DFcalc: 

l [ - I F - D F c a l c [  2] 
P3N(F/E) dF = 7rea---~o exp e~r2 dF, (8) 

with a D defined by 

2 = or2(1 _ a 2 ) ,  (9) (7 D 

where cr A is defined by Srinivasan & Ramachandran 
(1965). D (Luzzati, 1952), cr A, (7" N and e are defined in 
Table 1. The subscript N for the probability distribution 
stands for non-centrosymmetric. 

The probability distribution of F I given F is, as 
already discussed, formally equivalent to the probability 
of F given F~alc. The same expression can be used but 
the parameters should be changed appropriately and we 
represent this by adding a prime to the symbols (D 1 
corresponds to the coordinate differences between the 
structures).* 

In the probability distribution of F, other sources of 
phase information can be included. Further, to minimize 
the bias towards the model, the amplitude distribution 
can be chosen as the Wilson distribution, thus not using 
any information about the amplitude of F~al~ or even only 
using the information that F is positive. For example, 
using the Wilson distribution and denoting the phase 
probability by P~((/F, E), P3 can be written 

P3N(F/E) dF = P~(~/F,E)(1/Tro~)exp(--FZ/o2u) dF. 
(10) 

The integral (3) can now be evaluated and fbe,~t 
obtained: First rewrite (8) for P4, choose (10) for P3 
and insert these in (7); then insert (6) and (7) in (5). We 

* There is however one difference: Between the two structures, atoms 
can be added or removed whereas atoms are always added to a partial 
model compared with the true structure. The probability distribution 
for the new structure factor is not the same when atoms are removed as 
when they are added so the derivation of (8) is not valid when atoms 
are removed. This can be formally solved by assigning the structure 
with less scattering matter as the parent structure and regarding the 
remaining exchanged scattering matter as 'coordinate errors', which 
holds as long as the added atoms are of the same type as the removed 
atoms. The often assumed Gaussian distribution of coordinate errors 
would of course not hold in this case and methods for estimating 
parameters depending on this assumption will in principle be invalid. 
However, numerical tests show that the distribution of f, when atoms 
are removed from a model, is well described by (8) with D and tr D 
estimated from the simulated data by the program S I G M A A  (Read, 
1986). (Results not shown.) 

obtain, expressing F and F' in polar coordinates [(F, 4) 
and (F' ,  ( ' ) ,  respectively]: 

cx~ 27r ~ 27r 

fbest, N = K. f  F d F  f d~ f F I dF I f d~'(F I -  F) 
0 0 0 0 

× exp[--(lob ~ -- rZ)2/ztrZb~,l ] 
, ,--12\2 -~ t2 × exp[--(lob ~ -- r ) /ZCrob~./] P~(UF, E) 

× exp(-F2/~r 2) exp ( - lF '  - O'FIZ/c~r~), 
( l l )  

where K is a normalization constant. 

2.3. Best difference amplitude 
The expression derived above gives the Fourier coeffi- 

cients to use to obtain the best difference map according 
to the definition of Blow & Crick (1959). For reciprocal- 
space refinement, an estimate of A F  -- ( F ' - F ) ,  
not influenced by phase probabilities, is needed. The 
refinement can then be carried out by calculating F' 
as F + AFbest [or F as Fc,lc + ( F -  Fcalc)bcs t in the case 
where there is no related structure, where ( F -  Fcalc)bcs t 

is the best estimate of F -  Fcalc]. Another possibility 
is to use difference refinement (Fermi, Perutz, Dickin- 
son & Chien, 1982). F I would then be calculated as 
Fcalc 4-AFbest and F '  used in the refinement program. 
This will minimize [ A F o o t -  (F1cal~ -Foals)]. 

To estimate AF, we use (3) again but we now 
calculate the expectation value of AF instead of f. 
This will minimize the probability-weighted r.m.s, error 
between the true A F  and the estimate in the same way 
as (3) minimizes the probability-weighted r.m.s, error 
between ftrue and the estimate (in the complex plane). 
The integral is 

A g b e s t - - . 1 1 1  AFP(F,F'/Iob~,gb,~,E) dFdF" ( 1 2 )  

By expressing the integral of ( '  with the zero-order mod- 
ified Bessel function, one can rewrite this as (Appendix 
A) 

cx~ 27r 

AFb~t, N = K.f F dF .f d~ .f F' dF' × AF 
0 0 0 

x exp[--(lob~ 2 2 2 - F ) /2Cr,,b.~. 1] 

× exp[-(gb,  " ~ ' ~ ' ~  '~ --  P ) /ZO'obs, 1] 

x P~((/F,E)exp(-F2/o~) 
x e x p [ - ( F  '2 + DleF2)/ecr~] 

t t t2 x/o(20 F F/eat, ). (13) 

The expressions corresponding to (8), (10), (11) and 
(13) for the centrosymmetric case are given in Appendix 
B. 
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2.4. Simplified formula 
Expression (11) can be simplified if a few assump- 

tions are made, namely: (i) the measurement errors have 
a Gaussian distribution around F (instead of around 
I = F 2 as assumed so far); ( i i ) f  << F; ( i i i ) f  << F; and 
( iv)  O'obs, F < F (not required for difference amplitudes). 
These four assumptions lead to (Appendix C) 

,2 e,r~/2)] fbest, N = m[(scr20/Z)/(aZbs, r + aobs, r + 

× (Volb.~ -- Fobs) 

= mw(r 'b .~-  Fobs), (14) 

thus defining w (we drop the prime on cr o since there 
is only one at) in the formula). If instead an expres- 
sion for the amplitude difference is sought, then m 
should be omitted. The corresponding expression for the 
centrosymmetric case of equation (14) is obtained by 
changing a 2 to 2o 2.  

In the following, we discuss assumptions (i) to (iv). 
The first assumption is in general acceptable, as 

already mentioned in §2.2. 
When the change between the two structures is small, 

the second assumption, f << F, will be true. 
The third assumption, f << F, will be true for most 

reflections if assumption (ii) is true. For those reflections 
not fulfilling assumption (iii), f is in general still small 
on an absolute scale (F and F '  both small) and these 
reflections will give a small contribution to the total 
differences. In the case of (difference) maps, these 
reflections will also have an uncertain phase, i.e. a small 
figure of merit, and their influence will thus be reduced 
further. 

The fourth assumption is commonly made when first 
an estimate of F is calculated and then a phase prob- 
ability weight. This separation between amplitude and 
phase weighting in (11) is the basis for the simplification 
leading to (14). In general, this separation is not strictly 
correct, since the phase probability depends on the 
value of F. However, if assumption (iv) is fulfilled, this 
dependence can be neglected and the full probability 
distribution of F can be replaced by a point estimate 
from it. The variation of the phase probability with F 
can be illustrated by the variation of m with F as shown 
in Fig. 2. If the maximum acceptable relative change 
of m is p then it can easily be shown that the variation 
of F should be less than pF (in the limiting case of 
a small F; for larger Fs, the condition is weaker). As 
long as O'F, obs is not large compared with F, the relative 
variation of m is not too large, which implies that the 
variation of P. over the range of F where the probability 
distribution o~ F is non-negligible is small. In general, 
F is determined with a reasonable accuracy (e.g. in a 
static experiment recorded prior to a less-accurate time- 
resolved measurement of F ') ,  and assumption (iv) is 
fulfilled, allowing F to be set to a constant value in 
(1 1). In practice, there are always reflections for which 

Table 2. Comparison for MBS (see text) between non- 
optimized data (F'obs -- Fobs), optimized data from (14) 
using tro estimated from the simulated data and ( t ) from 

the model structure factors 

The first line ( 'No f.o.m.') shows the correlation for the map without 
figure-of-merit weighting (Read, 1986) which is used for all the other 
maps. The use of (14) is thus more important in this case than 
figure-of-merit weighting. The last line shows the effect of setting the 
high-resolution limit at 2.7/~ instead of at 2.3/~. It is seen that the 
improvement cannot be obtained by a simple resolution cut-off. Note 
that the correlation coefficient for amplitudes in this case is calculated 
only with data above 2.7/~,. The correlation coefficient is defined in 
Table 1. It is calculated between the true difference data (see text) and 
the data derived from the simulation. The average w in (14) is given 
in the column ~. 

Correlation Coefficient 
Map maps amplitudes 

No f.o.m. 0.513 
Non-optimized 0.530 0.540 1 
Optimized 0.626 0.666 0.529 
Optimizedt 0.633 0.685 0.367 
Resolution cut-off 0.557 (0.671) 1 

O'obs, F is not much smaller than F. However, this would 
mostly occur for the weakest reflections, for which the 
wide distribution of ~ will result in a small fb~st (or small 
m if the ~ integral is separated) and a small contribution 
to the difference map. 

To reduce the influence of systematic errors, data sets 
of both F and F '  from the same crystal, under the same 

1 . 0 1  ' ' 

0.8 

0.6 

0.4 

0.2 

, .  r - -  I + , , 

if' 
i 

/ 

/ / "  

0 2 4 6 8 10 

X 

Fig. 2. The figure of merit, m, as a function of X = 2 F ' F / e a  2. In 
the non-centrosymmetric case (solid line), m = Ii (X)/Io(X)  and, in 
the centrosymmetric case (dashed line), m = tanh(X) (Srinivasan, 
1966). Io(X) and Ii (X) are the zero- and first-order modified Bessel 
functions. 
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conditions, might be used even if there is a separate 
more accurate data set of F. In this case, assumption 
(iv) concerns the more accurate data set. Even though 
condition (iv) is then not fulfilled for the F used, one 
can justify use of the simplified formula (using the more 
accurate F for calculating m). 

Therefore, it is expected that using the simplified 
formula should always be at least as good as using 
only figure-of-merit weighting. This was confirmed by 
the experimental results presented in §3 (MBS), which 
show that the improvement when using (14) was signif- 
icantly larger than the one resulting from figure-of-merit 
weighting only (see Table 2). Further improvement by 
use of the impractical rigorous expression is expected to 
be minor, although numerical tests using (11) have not 
been carried out for a complete data set. 

2.5. Estimation of parameters 
For expression (14), an estimate of at) (which is a 

function of resolution) is needed. To obtain a o, estimates 
of a N and o A are required, see (9). cr~ is easily estimated 
from the data as F2/e and a a can be estimated as 
described by Read (1986). If  .f << F then 0 .2 can 
also be obtained as n(F'-F)2/e, where n is one for 
centric reflections and two for acentric reflections (Read, 
1986). However, both methods will overestimate a o 
owing to the measurement errors and this has to be 
taken into account, see Fig. 3. If the variances of the 
observations are well estimated, the true a o can be 
obtained by deconvolution of the observed distribution 
with the measurement error distribution since the ob- 
served distribution results from a convolution of the true 
differences and the measurement errors. Since these are 
Gaussian distributions, this translates into 

l°° i 

10 

~ .x  . . . . . . . . . . . . . .  . . .  / . . . .  

~.~ ' ' / x  x x  ~ / "  

. . . .  I I I I I I .  1 J ; I I , 2 - _ 1 . 3  

100.0 5.1 3.6 3.0 2.6 2.3 

d [ A ]  

Fig. 3. Estimation of at) for simulated data (MBS, see text). The 
solid line represents the true 0.D (estimated from model data), the 
dashed line aO estimated from noisy data and the dashed-dotted 
line 0.8 estimated from noisy data but with deconvolution with the 
observed variance. (The 0.D estimated from noisy data results from 
a convolution of the true differences and measurement errors.) The 
influence of the measurement errors is larger at higher resolution 
since the higher-resolution data are weaker and it can also be 
seen in the figure that the true and estimated 0.o diverge as the 
resolution increases. Using the estimated variances, the influence 
of the measurement errors can be removed by a deconvolution of 
the observed distribution with the measurement error distribution 
(see §2.5). In each bin, 0.2 o was estimated as n ( F ' - - F ) 2 / e  (see 
§2.5). The deconvolution consisted of subtracting the average 
o.2 0 . , 2  ( ob.~. V + obs, ~) from ( F '  -- F) 2 but not letting 0.~ be less than 

half of n(F' -- F)2/e [since (°"2obs, F "1" 0.obs,t2 F) is about as large 

as ( F ' - - F )  2 and both are estimated only approximately[. The 
dotted line corresponds to the dashed line but with 0.~ estimated as 
0.2(1 _ 0.2) using the program SIGMAA (Read, 1986) to estimate 
aa. The two ways of estimating 0.0 thus give similar results. 

2 : 0.2 2 .~_ t2 0.0 o.ob, -"(0.obs.~ aob,.F)/~, (IS) 

where a 2 is the estimation obtained neglecting the D, obs 
presence of measurement errors. 

Estimates of the structure-factor amplitudes and their 
variances are obtained by the usual methods. Correctly 
estimated variances are of course of major importance. 

070  ~ . . . . . .  ~-T ' ' ' ' ~1.0 

"U 0.60 

• .~ I ~ .  ~ _ 

0.50 
L) 

0 . 2  

1 
0.40 . . . . . . . . . . .  I . . . . . . .  "i"/","~;-] 0.0 

0.1 1.0 10.0 

Fig. 4. Effect of badly estimated variances of the difference amplitudes 
(or badly estimated 0.0) for the case MBS (see text). The 0.obs, FS 
were multiplied by k before (14) was applied. Thus, k -- 0 
corresponds to using Fob s -- Fobs without modification, k -- 1 
corresponds to 0.0 estimated from the models and 0.obs. F as output 
from the data-reduction program. Correlation coefficients were 
calculated between model data and simulated optimized data. The 
solid curve is the correlation coefficient between the difference maps 
and the dashed curve between the difference amplitudes. The dotted 
curve (scale on the right) shows the average of w in (14). 
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Reflections for which the variances do not correctly 
reflect the error will not be correctly treated and should 
be rejected. This can be achieved by evaluating the prob- 
ability of the observed value and rejecting the reflection 
if this probability is too small. This is what is done 
when an outlier of equivalent intensity measurements is 
rejected and can here also be applied to the probability 
of an observed AF given the estimated variance and the 
a priori  distribution of AF. 

For difference maps, m should also be estimated and 
this can be done with the usual methods, e.g. with the 

program SIGMAA (Read, 1986). If phase information 
/ 

from a model is used then either Fob s or Fob s [or 
/ 

(Fob s + Fobs)/2] can be used in the phase probability 
expressions since the difference is assumed to be small. 
Note that if SIGMAA is used to estimate ~D then Fob s 

/ 

and Fob s should be input to the program and not Fob s 
and F a c. 

The parameter D needed in (11) and (13) can be 
obtained as discussed by Read (1986). 

It is important not to underestimate u o excessively, 
which can be understood in the following way: The 

:,~b" ,r 

/ N 

(a) (b) 

(c) 

Fig. 5. Difference maps MBS (see text). The map in (a) is calculated 
with the amplitudes m(F~obs -- Fobs), where m is the figure of merit 
as calculated with SIGMAA" (Read, 1986) with Fobs and Fcalc (from 
1MBC) as input and with phases from 1MBC. (b) is obtained by 
using the same coefficients multiplied by w from (14). (c) shows 
what the difference map should look like (using the model difference 
amplitudes but the same completeness and phases as for the other 
maps). The heme group of the parent structure is shown with black 
lines (the Fe atom as a cross). Positive density is coloured blue 
and negative red. The large negative peak in (c) corresponds to 
the old position of the CO (and to some extent to the motion of 
the Fe atom) and the large positive peak to the new position. The 
maps are contoured at +(the negative peak height divided by 3), 
where the negative peak height is the minimum density value in 
the map (which corresponds to the removed CO and which is the 
most prominent peak in the map). These levels show more clearly 
the effect of the method than contouring at a given tr level since 
in the latter case the amount of spurious noise peaks would be 
approximately the same in all maps (the map r.m.s, being essentially 
given by the noise). Expressed in map r.m.s., the peak is larger for 
the optimized map. The negative peak height expressed in as is 7.1, 
9.1 and 10.7 for the three maps, respectively. 
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observed differences consist of the true differences and 
noise, AFob s -- AFtrue + AFnois e. Since the Fourier trans- 
form is a linear operation, the density map will consist 

j .  ~-- 

% 

¢ ,  

(a) 

(b) 

Fig. 6. Difference maps MB (see text). As (a) and (b) in Fig. 5. Phases 
from 1MBC. The levels are +(the negative peak height divided by 
1.5) in these maps. The negative peak height expressed in ors is 4.3 
and 6.1 for the two maps, respectively. It is known that the CO 
molecule is photolysed and that a downward motion of the heme 
Fe atom should follow. This agrees with the two largest peaks in 
(b). Other changes are expected to be smaller. In the improved 
map, (b), the major peaks are enhanced compared with the smaller 
peaks, many of which are chemically unreasonable, and it seems 
reasonable to interpret this as the noise being reduced and the true 
densities appearing more clearly. 

of the sum of the true density, Aptru e - -  FT[AFtrue] ,  

and the noise density, APnoise = FT[AFnoise]  (neglecting 
the phase error that will be the same for noise-free and 
noisy data), where FT symbolizes the Fourier transform. 
Modification of the observed amplitudes, as described, 
means that the density is modified in such a way that the 
reduction of the noise density is larger than the modifi- 
cation of the true density. If we underestimate ~r o, we 
will distort the true density excessively, whereas, if we 
overestimate cr o, we will tend towards the non-optimized 
observed density, AlPobs, which contains more noise than 
the optimized map but where the underlying APtru e is 
non-distorted. It is well known that random amplitudes 
and model phases will reconstruct the model (with added 
noise) so also ZlPobs is biased. The conclusion is that it 
is important to correctly estimate the parameters. 

The optimized difference vectors minimize the noise 
in the map but the true density is systematically reduced 
[since w is always between 0 and 1 when using (14)]. 
Therefore, the difference map has to be normalized with 
(~-~, w) -1 to better estimate peak heights in difference 
maps and to set the difference amplitudes on a correct 
scale. 

2.6. Other potential  applications 

To apply (14) to other situations involving small 
differences, the validity of the assumptions on which 
(14) rely must be verified in each case. For example, 
anomalous differences might be the result of only one 
scatterer and in this case a Gaussian distribution of the 
differences is not a good approximation (Terwilliger, 
1994), though this is not essential for the method. For 
other applications, one also needs to consider the validity 
of the suggested methods for estimating the parameters. 

In the case of difference Patterson amplitudes, the 
expectation value of (ZIF) 2 rather than ZIF should be 
used. This will minimize the probability-weighted r.m.s. 
error between the true (A IF) 2 and the estimate (and thus 
the r.m.s, error in the difference Patterson map) instead 
of the probability-weighted error of AIF. Following the 
derivation in Appendix C, one finds that the expectation 
value of (ZIF) 2 reduces to (29) with fx replaced by f f .  
This integral evaluates to # 2 +  cr 2 with # and ~r given 
by (30): 

[(AF)2]best, N 

,2 ec r2 /2 ) ]  , 2 = [(eO'2/2)/(O'o2s, F -+- O'obs, F -[- ._.- -. ( F o b s -  Fobs) 

,2 e~2/2) x [(e~rZ/z)/(~roZs, r + %bs, r + 
/2 t 

+ (ooZbs, F + O'obs, F)/(Fob s -- Fobs)Z] 
t2 2] = w2(AFobsl2[1 + (o'oZs, r + Crobs, r ) /W(AFobs)  

t2 
= (AFbest, N)2[1 -~- W(O'2bs, F + O'obs, F)/(AFbest,  N)2]. 

(16) 

The best estimate of (Z~F) 2 is thus larger than the square 
of the best estimate of ZIF. 
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3. Applications 
The simplified formula (14) has been tested for three 
different Laue data sets, of which the first two are from 
fast time-resolved experiments. The Laue method is 
often employed in the field of fast time-resolved protein 
crystallography (e.g. Hajdu & Andersson, 1993), owing 
to its unique advantage of gathering a large amount 
of information in a minimal time. This is done at the 
expense of data quality since diffracted intensities lie on 
top of a polychromatic background, are often spatially 
overlapped and generally need to be normalized in a 
wavelength-dependent fashion before useful structure- 
factor amplitudes can be extracted. 

The method has been tested using a home-made rou- 
tine written with IDL (Research Systems Inc.) with in- 
put/output in MTZ format (Collaborative Computational 
Project, Number 4, 1994). A standard Collaborative 
Computational Project, Number 4 (1994) format version 
of the program will soon be written. Laue data process- 
ing was done using the Daresbury Laue Software Suite 
(Campbell, 1995), a home-made integration program 
(Bourgeois, Nurizzo, Kahn & Cambillau, 1997) and the 
Collaborative Computational Project, Number 4 (1994). 

The first case, referred to as MBS, consists of sim- 
ulated data from two models of myoglobin. The idea 
is to produce realistic data sets, including noise, and 
to examine the improvement by application of (14) as 
judged by comparison with the corresponding noise- 
free data sets. The parent structure is obtained from a 
refined model of carbonmonoxy myoglobin at 40 K and 
the related structure is the photolysed product (Teng, 
Srajer & Moffat, 1994). In this structure, the bond 
between the CO molecule and the Fe atom of the 
heme group is broken and the CO is found in a dock- 
ing site inside the heme pocket approximately 1.5/~ 
from the bound position. There are also further less- 
prominent rearrangements in the protein. Integrated in- 
tensities, based on structure factors from the two models, 
the X-ray spectrum and the sensitivity of the detector, 
were calculated for a data set typical for an experiment 
such as MB, described below. Based on experimentally 
observed variances (expressed as a function of reflection 
intensity), noise was then added to the intensities. The 
data were treated in the same way as experimental 
data. The data were 83% complete (~ -2 .3 /~ ,  using 
only singles, 60% in c~-4.6/~ and 86% in 4.6-2.3/1,) 
and with an unweighted R s y  m o f  21%, see Bourgeois et 
al. (1996). The phases were calculated from the model 
1MBC (Kuriyan, Wilz, Karplus & Petsko, 1986), where 
1MBC is the entry label in the Brookhaven Protein 
Data Bank. It is a model of carbonmonoxy myoglobin 
determined under different conditions and refined in- 
dependently. It is used here to mimic the differences 
between the model and the parent structure, or2 o was 
estimated both from the noisy data and from the noise- 
free model data as n(F '  - F ) 2 / e ,  as described in §2.5. 
Fig. 3 confirms that cr o obtained from the noisy data is 

overestimated and that the deconvolution improves the 
estimation. The variances of the difference amplitudes 
were as output from the data-reduction program. We 
can directly compare the obtained difference amplitudes 
and difference map with the true ones, i.e. difference 
amplitudes obtained directly from the models and the 
difference map calculated with these. We define the 
true difference map as the one calculated with the 
noise-free amplitude differences of the two models but 
with the same completeness and phases as for the 
simulated noisy data. Table 2 presents a comparison 
of the true data and the simulated data and shows 
the efficiency of (14). It is interesting to examine how 
sensitive the method is to correctly estimated parameters 
(i.e. Oob s and ao). This is shown in Fig. 4. It can 
be seen that the correlation coefficients show large 
improvement for correctly estimated parameters but that 
'overoptimization' (k >> 1, i.e. cr o underestimated) 
makes it worse than in the non-optimized case (cf. 
the discussion in §2.5). Note that parameters estimated 
directly from the data give nearly optimal improvement 
for this simulation (see Table 2). In Fig. 5 are shown 
the difference maps and it can be noted that the noise 
reduces considerably by applying (14). 

The second case, referred to as MB, is similar to 
MBS but based on real data from an experiment per- 
formed at room temperature (Srajer et al., 1996). The 
parent structure is carbonmonoxy myoglobin and the 
related structure is the photolysed product 4 ns after the 
photolysing laser flash. The data consisted of 47 im- 
ages, each with 450 ps accumulated exposure time. The 
data are highly redundant but with significant statistical 
errors. The data were 84% complete (oc-2.0/~,, using 
only singles, 64% in cx~-4.0,~ and 87% in 4.0-2.0 A) 
and with an unweighted R~ m of 13% (14% for the 
related structure data set). In t~is case, the true difference 
amplitudes are not known but the non-optimized and 
optimized difference maps can be compared, Fig. 6, 
and again the (assumed) noise in the map reduces [the 
average w in (14), ~, is 0.340]. 

In the third test case, a modified model of native 
cutinase (Martinez, De Geus, Lauwereys, Matthyssens 
& Cambillau, 1992), a fungal lipolytic enzyme of 
22 kDa,* was compared with monochromatic and Laue 
data of the native. The 1.0/~ resolution model (Longhi, 
Czjzek, Lamzin, Nicolas & Cambillau, 1997), with 
Rcryst -- 9.7%, was modified by removing one residue 
in tile catalytic triad and by only keeping one of the 
conformations for the residues modelled in multiple 
conformations. In this case, there are only observed 
intensities of the related structure (the Laue data set 
of the native structure) and a model of the parent 
structure (the modified model) but no observations of 
the parent structure. The monochromatic data (of the 
native structure) only serves as a reference. Since the 

* I D a  - -  I Da l ton  - -  1 .66054 × 1 0  - 2 7  kg.  
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monochromatic data are of high quality (Rcr ~t = 9.7% 
to 1.0/~ but here used to 1.5/~ since the ~aue data 
set extends only to this resolution), it can be taken 
as a good approximation of the true structure-factor 
amplitudes of the native [the refined Laue data set has 
Rcr. st = 19.3% and Rfrce : 24.2% to 1.5/~ resolution 

• y ,  . . . 

(Bourgems, Longhl, Wulff & Cambdlau, 1997)]. If 
the technique works satisfactorily, applying (14) to 
the differences between the modified model and the 
Laue data should bring them closer to the differences 
between the modified model and the monochromatic 
data. The Laue data were in this case from 19 images, 
each with 450ps accumulated exposure time but the 
data quality is better than MB because the crystals 
are better diffracting and the X-ray flux was higher 
(Rsy m : 10.4%). The completeness was 72% (18-1.5/~, 
using only singles, 48% in 18-3.0/~ and 75% in 
3.0--1.5/~). Even though the modifications of the 
model are small, the true differences are expected to 
be larger since it is a comparison between a model 
and experimental data. Because of this fact and the 
higher data quality, the influence of statistical noise 
is smaller. We can thus expect the improvement to 
be less significant. The difference amplitudes and the 
corresponding difference maps were calculated for 
modified model/monochromatic data and for modified 
model/Laue data. With (14), the correlation coefficient 
between the maps increases from 0.478 to 0.491 and 
between the amplitude differences from 0.703 to 0.722 
(~ = 0.935). Several different modifications of the 
model were tried to verify that the improvement of the 
data was not random. Residues were removed or shaken 
(randomly moved from their original position). The 
number of residues involved and the amplitudes of the 
shaking were also varied. The optimized differences 
were always better but the improvement was, as 
expected, smaller the larger the modification. 

4. Conclusions 

In the first two examples presented in §3, the sim- 
ple expression (14) is shown to greatly improve the 
estimates of the structure-factor differences as judged 
by comparison with the true difference amplitudes and 
difference map in the case of the simulation, and by 
inspection of the difference maps in the case of real data. 
The method should always give improved estimates of 
difference structure factors, provided that the a priori 
information is reasonably correct, but the improvement 
is only substantial if the noise in the difference am- 
plitudes is significant relative to the noise-free values. 
The method could be applied to any situation where 
difference structure factors are used, e.g. for difference 
Patterson maps or when anomalous data are used, but the 
simplified formula (14) might need some modification. 

We recommend the expression derived here to be 
routinely applied for difference data if the subsequent 
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analysis does not already take a priori information into 
account. 

APPENDIX A 

Following Sim (1958), we can express the phase integral 
in (12) using Bessel functions: 

2rr 

f e x p ( - l F '  - D'FI 2/ecru) d( '  
0 

27r 
= f exp{- [F  '2 + D'2F 2 -- 2F'D'F 

0 

x cos(~' - ~)]/ecr~} de' 
2rr 

= f exp[ - (F  '2 + D'2F2)/eCr'D 2] 
0 

x exp[2F'D'Fcos(( '  - ()/ecr; 2] d~' 

exp[_(F,2 + D,2F2 ,2 , , ,2 = )/e%]2rrlo(2D F F / e % ) ,  
(17) 

where I 0 is the zero-order modified Bessel function. 

APPENDIX B 

B 1. Expression (8) 

From the same references (Luzzati, 1952; Wilson, 1949; 
Srinivasan & Ramachandran, 1965), we obtain for the 
centrosymmetric case: 

P3c(F/E) OF = [1/(27recr2) I/2] 

x exp( - IF  - DF.,cL2/2e~r 2) dF. (18) 

where vectors are used to denote the structure factors 
when the sign is included. 

B 2. Expression (10) 

For the centrosymmetric case, (10) becomes 

P3c(F/E) dF = Ps(s/F,E)[1/(2rCa2u) I/2] 

x exp(-V2/2crZ) dr,  (19) 

where P~ is now the probability distribution of the sign 
of F extracted from a model and/or obtained by other 
means. The distribution of the amplitude is obtained by 
multiplying the distribution by two. 

B 3. Expression (11) 

Using (18) and (19) instead of (8) and (10), we obtain: 
o c  o ( 3  

fbest, c = K  f dF f d F ' x ( F ' - F )  
- - O C  - - C ~ )  

x exp[--(lob,~ - F 2 )  2 /2a2b ,~ ]  

x exp[--(l'b, ~ F t 2  2 12 - ) /2aob.~] 

x Ps(s/F,E)exp(--FZ/2cr2N) 

X exp( - lF '  - D'FI2/2ec;a). (20) 
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B4. Expression (13) 
For the weighted average of the difference amplitude, 
(F' - F) in (20) should be replaced by IF' - FI. How- 
ever, the conditional probability of F given Fcal~ has 
been derived (Srinivasan & Ramachandran, 1965). Their 
expression (21) becomes in our notation: 

2 2 2 P(F/E) = (2/Trerr2) 1/2 exp [ - (F  2 + D F~al¢)/2ecro] 

x cosh(-FDFcalc/ea2). (21) 

Use of this instead of (18) means that the limits of 
integration of (3) will be 0, cx) instead of -oo ,  oo for 
both F '  and F and the weighted average of (F' - F) 
becomes 

A F b e s t ,  c 

O O  o o  

= K f aF,f aF' x ( F ' - F )  
0 0 

x exp[--(Iob ~ 2 2 2 - r ) /2aobs, l] 
t2 2 t2 

x exp[--(lolbs- F ) /2aobs, t] 

X P,(s /F,E)exp(-F2/¢Eu) 

x e x p [ - ( f  '2 + D'2F2)/2ea'20] 

x cosh(D'F'F/ecr'2o). (22) 

APPENDIX C 
Simplified formula 

With the assumptions given in §2.4, (11) will be sim- 
plified. 

We choose to use point estimates of F and F '  and 
to replace the Gaussian distributions of F and F ~ by 
a Gaussian distribution of AF. That the measurement 
errors of A F  have a Gaussian distribution (with the 
variance being the sum of the two separate variances) 
follows if the measurement errors of F and F '  have 
Gaussian distributions and if these are independent. The 
observed structure-factor amplitudes are obtained e.g. 
with the method of French & Wilson (1978). 

Starting from (11), replacing the measurement error 
distribution with a Gaussian distribution around AFob s -- 
(F;b  s -- Fobs) and changing variables F ' ,  ( '  -+ fx,fy (see 
Fig. 1), we obtain: 

,DO 271" O(3 O O  

fb,,~t,N = xf / iF(Fob,)  dF f d~ f dfx f dry × f 
0 0 - o o  - -oo  

x exp[--(AFob ~ 2 2 '2 - AF) /2(aob.~,r + Crobs, F) ] 

x P~( ( /F ,E)exp[ ( - lV '  - O'Fl2)/ecr~], 

(23) 

w h e r e  6F(Fobs) is a Dirac 6 function indicating that F 
is equal to Fob ~. The Dirac 6 function is introduced 
since a point estimate of F is used in Pa instead of the 
full probability distribution. (The probability distribution 
of F is already evaluated when the point estimate is 
determined). Note that 

AF = [(F +f , )2  _.t._f.~?] 1/2 __ F 

and that f can be written as: 

(24) 

f =  (f~ cos(  - f y  sin()  + i(f~ s in(  +fy cos() .  (25) 

Since the probability distribution is even in f ,  the 
~x terms of f will cancel and f can be replacYd by 

cos(  + if~ s in(  =_fx ex~i ( ) .  
The assumption f << F implies that the differences 

between the two structures are small and in particular 
that the coordinate shifts are small. Thus, D' _~ 1. 
Further, f << F .implies that A F  ,',, fx" We evaluate the 
integral over F and rewrite (23): 

best, N 

2rr 

= K' f e~((/Fob~,E)exp(i~)d ( 
0 

o o  

x .f e x p ( - f 2 / e o ~ )  dfy 
- - 0 0  

t2 x .f fx exp[-(AFobs --fx)2/2(ry2obs, F + O'obs, F ) ]  
- - 0 ( 3  

2 - t2~ x exp(-fx/erro)dfx.  (26) 

The normalization constant can then be written 
2"n" 

K '-1 = f P¢({/Fobs, E ) d( 
0 

o O  

x f exp(-fy2/ecr~) dfy 
- - 0 0  

O 0  

t2 X f exp[-(AFob s --fx)2/2(O'2bs, F + O'obs, F) ] 

-2 - t2 ,, 
x exp(-Jx/ecro ) dfx (27) 

and the integral over fy in (26) will thus cancel with 
the normalization constant. The integral over ( [with the 
integrand P¢((/Fobs, E)exp(i()] is the usual integral for 
the figure of merit, where F is taken as a constant, and 
we denote it m. [The figure-of-merit integral arises from 
expression (14) in Blow & Crick (1959) when F is set 
to a constant.] Thus, 

( A F o b s  - - f x )  2 

fbest. N = K " m _ ~  .fx exp - 2(O.2bs. F + Cr'2obs. F) 

× exp( 2 t2 - fx  ~SaD ) dfx, (28) 

which can be rearranged to 
CX3 

= K ' "m I F2[1/(O'2  0 -'2 fbcst, N f f~exp{--~J~ t / ,  ob~,F + obs. e) 
- - O O  

t2 + 2/e°'~ 21 + fx[AFobJ(Cro2b.~, ... F + Oobs. F)] } df~. 

(29) 
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This distribution is a Gaussian with mean and variance 

A F o b s  / ( 0-2bs, t2 r 2r- 0-obs, F) 
t2 = 1/(0-,2,b,, F + 0-oh, F) + 2 / (~0-g)  

0 -2 - -  
,2 2/ (e0-~)"  1/(0-<2b,, F + 0-obj. F) + 

(30) 

Evaluating the integral gives 

bcst, N z ml, 
t2 2 t2 

= m[(eo-o/2)/(o-ob~, e + %bs, F + e0-~/2)] 

× (Folb.~ - Fobs) 

= mw(Fo'bs- Fobs), (31) 

which is equivalent to (14). The formula for the cen- 
,2 to 20-~. trosymmetric case is obtained by changing 0-o 

In the case of difference amplitudes, m in (14) should 
be omitted. In this case, the assumption 0-ob~, F < F is 
not necessary since the integrals of F and ( will cancel 
with the normalization constant even if P~ depends on 
F (i.e. the probability distribution of F is kept instead 
of setting F = Fobs). 

The authors would like to thank Keith Moffat for 
initiating the project from which this work resulted. 
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